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Eusociality, the reproductive division of labour with overlapping 
generations and cooperative brood care, is one of the major 
evolutionary transitions in biology1. Although rare, eusocial-

ity has been observed in a diverse range of organisms, including 
shrimps, mole rats and several insect lineages2–4. A particularly 
striking case of convergent evolution occurred within the holo-
metabolous Hymenoptera and in the hemimetabolous termites 
(Isoptera), which are separated by over 350 Myr of evolution5. 
Termites evolved within the cockroaches around 150 Myr ago, 
towards the end of the Jurassic period6,7, about 50 Myr before the 
first bees and ants appeared5. Therefore, identifying the molecular 
mechanisms common to both origins of eusociality is crucial to 
understanding the fundamental signatures of these rare evolution-
ary transitions. While the availability of genomes from many euso-
cial and non-eusocial hymenopteran species8 has allowed extensive 
research into the origins of eusociality within ants and bees9–11,  
a paucity of genomic data from cockroaches and termites has pre-
cluded large-scale investigations into the evolution of eusociality in 
this hemimetabolous clade.

The conditions under which eusociality arose differ greatly 
between the two groups. Termites and cockroaches are hemime-
tabolous and so show a direct development, while holometabolous 

hymenopterans complete the adult body plan during metamorpho-
sis. In termites, workers are immatures and only reproductive castes 
are adults12, while in Hymenoptera, adult workers and queens rep-
resent the primary division of labour. Moreover, termites are dip-
loid and their colonies consist of both male and female workers, and 
usually a queen and king dominate reproduction. This is in con-
trast to the haplodiploid system found in Hymenoptera, in which 
all workers and dominant reproductives are female. It is therefore 
intriguing that strong similarities have evolved convergently within 
the termites and the hymenopterans, such as differentiated castes 
and a nest life with reproductive division of labour. The termites 
can be subdivided into wood-dwelling and foraging termites. The 
former belong to the lower termites and produce simple, small 
colonies with totipotent workers that can become reproductives. 
Foraging termites (some lower and all higher termites) form large, 
complex societies, in which worker castes can be irreversible12. 
For this reason, higher, but not lower, termites can be classed as 
superorganismal13. Similarly, within Hymenoptera, varying levels of 
eusociality exist.

Here we provide insights into the molecular signatures of euso-
ciality within the termites. We analysed the genomes of two lower 
and one higher termite species and compared them to the genome 
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of the German cockroach, Blattella germanica, as a closely related 
non-eusocial outgroup. Furthermore, differences in expression 
between nymphs and adults of the cockroach were compared to 
differences in expression between workers and reproductives of 
the three termites, to gain insights into how expression patterns 
changed along with the evolution of castes. Using 15 additional 
insect genomes to infer background gene family turnover rates, we 
analysed the evolution of gene families along the transition from 
non-social cockroaches to eusociality in the termites. In this study, 
we concentrated particularly on two hallmarks of insect eusocial-
ity, as previously described for Hymenoptera, with the expectation 
that similar patterns occurred along with the emergence of termites. 
These are the evolution of a sophisticated chemical communication, 
which is essential for the functioning of a eusocial insect colony3,14,15,  
and major changes in gene regulation along with the evolution of 
castes9,10. We also tested whether transposable elements spurred 
the evolution of gene families that were essential for the transition  
to eusociality.

Evolution of genomes, proteomes and transcriptomes
We sequenced and assembled the genome of the German cock-
roach, B. germanica (Ectobiidae), and of the lower, drywood termite 
Cryptotermes secundus (Kalotermitidae; for assembly statistics, see 
Supplementary Table 1). The cockroach genome (2.0 Gb) is consid-
erably larger than all three termite genomes. The genome size of 
C. secundus (1.30 Gb) is comparable to the higher, fungus-growing 
termite Macrotermes natalensis (1.31 Gb, Termitidae)16, but more 
than twice as large as the lower, dampwood termite Zootermopsis 
nevadensis (562 Mb, Termopsidae)17. The smaller genomes of ter-
mites compared to the cockroach are in line with previous size 
estimations based on C-values18. The proteome of B. germanica 
(29,216 proteins) is also much larger than in the termites, where 
we find the proteome size in C. secundus (18,162) to be similar to 
those of the other two termites (M. natalensis: 16,140; Z. nevadensis: 
15,459; Fig. 1). In fact, the B. germanica proteome was the largest 
among all 21 arthropod species analysed here (Fig. 1). Strong evi-
dential support for over 80% of these proteins in B. germanica (see 
Supplementary Information) and large expansions in many manu-
ally annotated gene families offer high confidence in the accuracy 
of this proteome size. We also compared gene expression between 
the four species. When comparing worker expression with queen 
expression in the termites and nymph expression (fifth and sixth 
instars) with adult female expression in B. germanica, we found 
shifts in specificity of expression for termites compared to the 
cockroach in several gene families (Fig. 2). It has previously been 
reported for the primitively eusocial paper wasp Polistes canadensis 
that the majority of caste-biased genes, especially those upregulated 
in workers, are novel genes19. The authors suggested that this may 
be a feature of early eusociality. We did not find the same pattern for 
the termites. Species-specific genes (those without an orthologue) 
were not enriched for differentially expressed genes in any of the 
termites, with slight peaks among Blattodea- and Isoptera-specific 
genes (Supplementary Fig. 1).

Gene family expansions assisted by TEs in termites
The transitions to eusociality in ants10 and bees9 have been linked 
to major changes in gene family sizes. Similarly, we detected sig-
nificant gene family changes on the branch leading to the termites 
(seven expansions and ten contractions; Supplementary Fig. 2 and 
Supplementary Table 2). The numbers of species-specific, signifi-
cant expansions and contractions of gene families varied within  
termites (Z. nevadensis: 15/5; C. secundus: 27/3; M. natalensis: 24/20; 
Supplementary Fig. 2 and Supplementary Tables 3–5). Interestingly, 
in B. germanica we measured 93 significant gene family expansions 
but no contractions (Supplementary Table 6), which contributed to 
the large proteome.

The termite and cockroach genomes contain a higher level of 
repetitive DNA compared to the hymenopterans we analysed (Fig. 1).  
C. secundus and B. germanica genomes both contain 55% repeti-
tive content (Supplementary Table 7), which is higher than in both  
Z. nevadensis (28%) and the higher termite M. natalensis (46%; Fig. 1)20.  
As also found in Z. nevadensis and M. natalensis20, LINEs and espe-
cially the subfamily BovB were the most abundant transposable 
elements (TEs) in the B. germanica and C. secundus genomes, indi-
cating that a proliferation of LINEs may have occurred in the ances-
tors of Blattodea (cockroaches and termites).

We hypothesized that these high levels of TEs may be driving 
the high turnover in gene family sizes within the termites and B. 
germanica21. Expanded gene families indeed had more repeti-
tive content within 10-kb flanking regions in all three termites 
(P <  1.3 ×  10−8; Wald t-test; Supplementary Tables 8 and 9), in par-
ticular in the higher termite M. natalensis. In contrast, gene family 
expansions were not correlated with TE content in flanking regions 
for B. germanica. These results suggest that a major expansion of 
LINEs at the root of the Blattodea clade contributed to the evolu-
tion of gene families within termites, probably via unequal crossing-
over21; however, the expansions in B. germanica were not facilitated 
by TEs. It can therefore be speculated that the large expansion of 
LINEs within Blattodea allowed the evolution of gene families that 
ultimately facilitated the transition to eusociality.

Expansion and positive selection of ionotropic receptors
Insects perceive chemical cues from toxins, pathogens, food and 
pheromones with three major families of chemoreceptors, the 
odorant (ORs), gustatory and ionotropic (IRs) receptors22. ORs, 
in particular, have been linked to colony communication in euso-
cial Hymenoptera, where they abound14,15,23. Interestingly, as 
previously detected for Z. nevadensis17, the OR repertoire is sub-
stantially smaller in B. germanica and all three termites compared 
to hymenopterans. IRs, on the other hand, which are less frequent 
in hymenopterans, are strongly expanded in the cockroach and 
termite genomes (Fig. 3 and Supplementary Fig. 3). Intronless IRs, 
which are known to be particularly divergent24, show the greatest 
cockroach- and Blattodea-specific expansions (Fig. 3a, Blattodea-, 
Cockroach- and Group D-IRs). By far the most IRs among all 
investigated species were found in B. germanica (455 complete gene 
models), underlining that the capacity for detecting many differ-
ent kinds of chemosensory cues is crucial for this generalist that 
thrives in challenging, human environments. In line with a special-
ization in diet and habitat, the total number of IRs is lower within 
the termites (Z. nevadensis: 141; C. secundus: 135; M. natalensis: 75).  
Nevertheless, IRs are more numerous in termites than in all other 
analysed species (except Nasonia vitripennis: 111). This is strik-
ingly similar to the pattern for ORs in Hymenoptera, which are 
also highly numerous in non-eusocial outgroups as well as in  
eusocial sister species14,23,25.

We scanned each IR group for signs of species-specific positive 
selection. Within the Blattodea-specific intronless IRs, we found two 
codon positions under significant selection for the higher termite 
M. natalensis (codeml site models 7 and 8; P =  5.4 ×  10−5). Within 
a subgroup of five sequences, this was more strongly pronounced 
with seven codon positions under significant positive selection for  
M. natalensis (P <  1.7 ×  10−10). The positively evolving codons are sit-
uated within the two ligand-binding lobes of the receptors (Fig. 3c),  
showing that a diversification of ligand specificity has occurred 
along with the transition to higher eusociality and a change from 
wood-feeding to fungus-farming in M. natalensis. Only two IRs 
were differentially expressed between nymphs and adult females in 
B. germanica. Underlining a change in expression along with the 
evolution of castes, we found 35 IRs to be differentially expressed 
between workers and queens in Z. nevadensis, 11 in C. secundus and 
10 in M. natalensis (Fig. 2 and Supplementary Table 10). The possible  
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role of IRs in pheromonal communication has been highlighted 
both in the cockroach Periplaneta americana26 and in Drosophila 
melanogaster27, where several IRs show sex-biased expression.

One group of ORs (orange clade in Fig. 3b) is evolving under 
significant positive selection at codon positions within the sec-
ond transmembrane domain in M. natalensis (codeml site model; 
P =  1.1 ×  10−11) and C. secundus (P =  5.6 ×  10−16; Fig. 3d). Such a vari-
ation in the transmembrane domain can be related to ligand-bind-
ing specificity, as has been shown for a polymorphism in the third 
transmembrane domain for an OR in D. melanogaster28,29, adding 
further support for an adaptive evolution of chemoreceptors, in line 
with the greater need for a sophisticated colony communication in 
the termites. Similar to IRs, a higher proportion of ORs were dif-
ferentially expressed between workers and queens in the three ter-
mites than between nymphs and adults in the cockroach (Fig. 2 and 
Supplementary Table 11), highlighting a change in expression and 
function along with the transition to eusociality. The evolution of 
chemoreceptors along with the emergence of the termites can also 
be related to adaptation processes and changes in diet compared to 
the cockroach. Experimental verification will help pinpoint which 
receptors are particularly important for communication.

CHC-producing enzymes have evolved caste-specificity
Despite their different ancestry, both termites and eusocial 
hymenopterans are characterized by the production of caste-
specific cuticular hydrocarbons (CHCs)30–32, which are often cru-
cial for regulating reproductive division of labour and chemical  

communication. Accordingly, we find changes in the termites in 
three groups of proteins involved in the synthesis of CHCs: desat-
urases (introduction of double bonds33), elongases (extension of 
C-chain length34) and CYP4G1 (last step of CHC biosynthesis35).

Desaturases are thought to be important for division of labour 
and social communication in ants36. As previously described for 
ants36, Desat B genes are the most abundant desaturase family in the 
termites and the cockroach (Supplementary Table 12), especially in 
M. natalensis where we found ten gene copies (significant expansion; 
P =  0.0003; Supplementary Table 5 and Supplementary Figure 4).  
As in ants, especially the first desaturases (Desat A–Desat E)  
vary greatly in their expression between castes and species in the 
three termites (Fig. 2 and Supplementary Table 13)36. In contrast 
to ants, where these genes are under strong purifying selection36, 
for the highly eusocial termite M. natalensis, we found significant 
positive selection within the Desat B genes (codeml site models 
7 and 8; P =  1.1 ×  10−16), indicating a diversification in function, 
possibly related to their greater diversification of worker castes 
(major and minor workers, major and minor soldiers). Although 
desaturases are often discussed in the context of CHC production 
and chemical communication, their biochemical roles are quite 
diverse36, and the positive selection we observe for M. natalensis 
may, at least in part, be related to their rather different ecology 
of foraging and fungus-farming rather than nest-mate recogni-
tion. Future experimental verification of the function of these 
genes will help better understand these observed genomic and  
transcriptomic patterns.
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Underlining an increased importance of CHC communica-
tion in termites, the expression patterns of elongases (extension 
of C-chain length) differ considerably in the termites compared to 
the cockroach (Fig. 2 and Supplementary Table 14). In contrast to  
B. germanica, in which elongases are both nymph- (five genes) and 
adult-biased (four genes), only one or two elongase genes in each 
termite are queen-biased in their expression, while many are worker-
biased. As with the desaturases, a group of M. natalensis elongases 
also reveal significant signals of positive selection (codeml branch-
site test; P =  4 ×  10−4), further indicating a greater diversification of 
CHC production in this higher termite.

The last step of CHC biosynthesis, the production of hydrocar-
bons from long-chain fatty aldehydes, is catalysed by a P450 gene, 
CYP4G1, in D. melanogaster35. We found one copy of CYP4G1 in 
B. germanica, Z. nevadensis and C. secundus, but three copies in  
M. natalensis, reinforcing the greater importance of CHC synthe-
sis in this higher termite. Corroborating the known importance 
of maternal CHCs in B. germanica37, CYP4G1 is overexpressed 
in female adults compared to nymphs (Fig. 2 and Supplementary 
Table 15). In each of the termites, however, CYP4G1 is more highly 
expressed in workers (or kings in C. secundus) compared to queens 
(Fig. 2 and Supplementary Table 15), adding support that, com-
pared to cockroach nymphs, a change in the dynamics and turnover 
of CHCs in termite workers has taken place.

Changes in gene regulation in termites
The development of distinct castes underlying division of labour 
is achieved via differential gene expression. Major changes in gene 
regulation have been reported as being central to the transition to 

eusociality in bees9 and ants10. Accordingly, we found major changes 
in putative DNA methylation patterns (levels per 1-to-1 orthologue) 
among the termites compared to four other hemimetabolous insect 
species (Fig. 4a). This is revealed by CpG depletion patterns (CpGo/e, 
observed versus expected number of CpGs), a reliable predictor of 
DNA methylation38,39, correlating more strongly between the ter-
mites than among any of the other analysed hemimetabolous insects 
(Fig. 4). In other words, within orthologous genes, predicted DNA 
methylation levels differ greatly between termites and other hemi-
metabolous species but remain conserved among termite species.

The predicted levels of DNA methylation correlated nega-
tively with the caste-specificity of expression for each of the ter-
mites. This is confirmed by a positive correlation between CpGo/e 
(negative association with level of DNA methylation) and abso-
lute log2(fold change) of expression between queens and workers 
(Pearson’s r =  0.32 to 0.36; P <  2.2 ×  10−16). The caste-specific expres-
sion of putatively unmethylated genes in termites is reflected in the 
enrichment of GO terms related to sensory perception, regulation 
of transcription, signalling and development, whereas methylated 
genes are mainly related to general metabolic processes (Fig. 4b 
and Supplementary Table 16). These results show strong parallels 
to findings for eusocial Hymenoptera40–43. This is in stark contrast 
to the non-eusocial cockroach, B. germanica, where there was only 
a very weak relationship between CpGo/e and differential expres-
sion between nymphs and adult females (r =  0.14), nor were any 
large differences apparent in enriched GO terms between putatively 
methylated and non-methylated genes (Fig. 4b).

Our results argue in favour of a diminished role of DNA 
methylation in caste-specific expression within eusocial insects, 
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as recently shown38,44. In fact, DNA methylation appears to be 
important for the regulation of housekeeping genes because pre-
dicted methylated genes are related to general biological processes 
(further supported by lower CpGo/e within 1-to-1 orthologues 

than in non-conserved genes)45, while caste-specific genes are 
‘released’ from this type of gene regulation. However, a recent 
study linked caste-specific DNA methylation to alternative  
splicing in Z. nevadensis46.
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Fig. 3 | Expansions, contractions and positive selection within iRs and ORs in termites. a,b, IR (a) and OR (b) gene trees of 13 insect species. In each 
tree, only well-supported clades (support values >  85) that include B. germanica or termite genes are highlighted within the gene trees. The lengths of 
the coloured bars represent the number of genes per species within each of these clades. The red asterisk in a denotes the putative root of intronless 
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Major biological transitions are often accompanied by expan-
sions of transcription factor (TF) families, such as genes containing 
zinc-finger (ZF) domains47. We also observed large differences in 
ZF families within the termites compared to B. germanica. Many ZF 
families were reduced or absent in termites, while different, unre-
lated ZF gene families were significantly expanded (Supplementary 
Tables 2–6). Queen-biased genes were significantly over-repre-
sented among ZF genes for each of the termites (P <  2 ×  10−10; χ2 test; 
Supplementary Table 17), indicating an important role of ZF genes 
in the regulation of genes related to caste-specific tasks and colony 
organization in the termites. This is in contrast to the significant 
under-representation of differentially expressed ZF genes within  
B. germanica (P =  4.8 ×  10−5; χ2-test). Interestingly, two other impor-
tant TF families (bHLH and bZIP)47, which were not expanded in 
the termites, showed no caste-specific expression pattern (P >  0.05), 

except bZIP genes, in which queen-biased genes were marginally 
over-represented for M. natalensis (P =  0.049). These major upheav-
als in ZF gene families and their caste-specific expression show that 
major changes in TFs accompanied the evolution of termites, strik-
ingly similar to the evolution of ants10.

Evolution of genes related to moulting and metamorphosis
Hemimetabolous eusociality is characterized by differentiated 
castes, which represent different developmental stages. This is in 
contrast to eusocial Hymenoptera, in which workers and reproduc-
tives are adults. While cockroaches develop directly through several 
nymphal stages before becoming reproductive adults, termite devel-
opment is more phenotypically plastic, and workers are essentially 
immatures (Fig. 2). In wood-dwelling termites, such as C. secundus 
and Z. nevadensis, worker castes are non-reproductive immatures 
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that are totipotent to develop into other castes, while in the higher 
termite M. natalensis, workers can be irreversibly defined instars. It 
is therefore clear that a major change during the evolution of ter-
mites occurred within developmental pathways. Accordingly, we 
found changes in expression and gene family size of several genes 
related both to moulting and metamorphosis.

In the synthesis of the moulting hormone, 20-hydroxyecdysone, 
the six Halloween genes (five cytochrome P450s and a Rieske-domain 
oxygenase) play a key role48,49. Only one Halloween gene, Shade 
(Shd; CYP314A1), which mediates the final step of 20-hydroxyecdy-
sone synthesis, is differentially expressed between the final nymphal 
stages and adult females in B. germanica (Fig. 2 and Supplementary 
Table 18), consistent with its role in the nymphal or imaginal 
moult. In the three termites, the Halloween genes show varying 
caste-specific expression (Fig. 2 and Supplementary Table 18),  
showing that ecdysone plays a significant role in the regulation 
of caste differences. Ecdysteroid kinase genes (EcK), which con-
vert the insect moulting hormone into its inactive state, ecdysone 
22-phosphate, for storage50, are only overexpressed in female adults 
compared to nymphs in B. germanica (16/51 genes, Fig. 2 and 
Supplementary Table 19). In termites, however, where the gene copy 
number is reduced (18 to 20 per species), these important moulting 
genes appear to have evolved worker-specific functions (Fig. 2 and 
Supplementary Table 19).

Whereas 20-hydroxyecdysone promotes moulting, juvenile hor-
mone (JH) represses imaginal development in pre-adult instars51. 
JH is important in caste differentiation in eusocial insects, includ-
ing termites12,52. Haemolymph JH-binding proteins (JHBPs), which 
transport JH to its target tissues53, are reduced within the termites  
(21 to 33 genes) but significantly expanded in B. germanica (51 copies;  
P =  0018; Supplementary Table 6). Thirteen of the JHBP genes are 
overexpressed in adult females and only 8 in nymphs in B. german-
ica (Fig. 2 and Supplementary Table 20). In both Z. nevadensis and  
M. natalensis, on the other hand, JHBPs are significantly more 
worker-biased (P <  0.01, χ2 test; Supplementary Table 20 and Fig. 2).  
In C. secundus, expression is more varied, with four worker-
biased, seven king-biased and two queen-biased genes (Fig. 2 and 
Supplementary Table 20).

These changes in copy number and caste-specific expression of 
genes involved in moulting and metamorphosis within termites 
compared to the German cockroach demonstrate that changes 
occurred in the control of the developmental pathway along with 
the evolution of castes. However, this interpretation needs to be 
experimentally verified.

Conclusions
These results, considered alongside many studies on eusociality in 
Hymenoptera9, 10, 14,36, provide evidence that major changes in gene 
regulation and the evolution of sophisticated chemical communi-
cation are fundamental to the transition to eusociality in insects. 
Strong changes in DNA methylation patterns correlated with broad-
scale modifications of expression patterns. Many of these modified 
expression patterns remained consistent among the three studied 
termite species and occurred within protein pathways essential for 
eusocial life, such as CHC production, chemoperception, ecdyster-
oid synthesis and JH transport. The stronger patterns we observe 
for M. natalensis, especially within genes linked to chemical com-
munication, such as the expansion of Desat B and CYP4G1 genes 
and significant positive selection in desaturases, elongases and IRs, 
may be associated with this termite’s higher level of eusociality and 
its status as a superoganism13. The analysis of further higher and 
lower termites would shed light on the generality of these patterns 
and possibly assist in the distinction between the influences of eco-
logical and eusocial traits.

Many of the mechanisms implicated in the evolution of eusoci-
ality in the termites occurred convergently around 50 Myr later in 

the phylogenetically distant Hymenoptera. However, several details 
are unique due to the distinct conditions within which eusociality 
arose. One important difference is the higher TE content within 
cockroaches and termites, which probably facilitated changes in 
gene family sizes, supporting the transition to eusociality. However, 
the most striking difference is the apparent importance of IRs for 
chemical communication in the termites, compared to ORs in 
Hymenoptera. According to our results, the non-eusocial ances-
tors of termites possessed a broad repertoire of IRs, which favoured 
the evolution of important functions for colony communication in 
these chemoreceptors within the termites, whereas in the solitary 
ancestors of eusocial hymenopterans ORs were most abundant14, 25. 
The parallel expansions of different chemoreceptor families in these 
two independent origins of eusociality indicate that convergent 
selection pressures existed during the evolution of colony commu-
nication in both lineages.

Methods
Genome sequencing and assembly. Genomic DNA from a single Blattella 
germanica male from an inbred line (strain: American Cyanamid =  Orlando 
Normal) was used to construct two paired-end (180-bp and 500-bp inserts) and 
one of the two mate-pair libraries (2-kb inserts). An 8-kb mate-pair library was 
constructed from a single female. The libraries were sequenced on an Illumina 
HiSeq2000 sequencing platform. The 413 Gb of raw sequence data were assembled 
with Allpaths LG54, and then scaffolded and gap-filled using the in-house tools 
Atlas-Link v.1.0 (https://www.hgsc.bcm.edu/software/atlas-link) and Atlas gap-fill 
v.2.2. For Cryptotermes secundus, three paired-end libraries (250-bp, 500-bp and 
800-bp inserts) and three mate-pair libraries (2-kb, 5-kb and 10-kb inserts) were 
constructed from genomic DNA that was extracted from the head and thorax 
of 1,000 individuals, originating from a single, inbred field colony. The libraries 
were sequenced on an Illumina HiSeq2000 sequencing platform. The C. secundus 
genome was assembled using SOAPdenovo (v.2.04)55 with optimized parameters, 
followed by gapcloser (v1.10, released with SOAPdenovo) and kgf (v1.18, released 
with SOAPdenovo).

Transcriptome sequencing and assembly. For annotation purposes, 22 whole-
body RNA-sequencing (RNA-Seq) samples from various developmental stages 
were obtained for B. germanica. For C. secundus, RNA-Seq libraries were obtained 
for three workers, four queens and four kings, based on degutted, whole-body 
extracts. In addition, we sequenced ten Macrotermes natalensis RNA-Seq 
libraries from three queens, one king and six pools of workers. All libraries were 
constructed using the Illumina (TruSeq) RNA-Seq kit.

For protein-coding gene annotation, B. germanica reads were assembled with 
de novo Trinity (version r2014-04-13)56. The C. secundus reads were assembled 
using Cufflinks on reads mapped with TopHat (version2.2.1)57,58, de novo Trinity56 
and genome-guided Trinity on reads mapped with TopHat.

Repeat annotation. A custom C. secundus and B. germanica repeat library was 
constructed using a combination of homology-based and de novo approaches, 
including RepeatModeler/RepeatClassifier (http://www.repeatmasker.org/
RepeatModeler/), LTRharvest/LTRdigest59 and TransposonPSI (http://
transposonpsi.sourceforge.net/). The ab initio repeat library was complemented 
with the RepBase (update 29 August 2016)60 and SINE repeat databases, filtered 
for redundancy with CD-hit and classified with RepeatClassifier. RepeatMasker 
(version open-4.0.6, http://www.repeatmasker.org) was used to mask the  
C. secundus and B. germanica genome. Repeat content for the other studied  
species (Fig. 1) was obtained from the literature61–67.

Protein-coding gene annotation. The B. germanica genome was annotated with 
Maker (version 2.31.8)68, using the species-specific repeat library, B. germanica 
transcriptome data (22 whole-body RNA-Seq samples) and the Swiss-Prot/
UniProt database (last accessed: 21 January 2016) plus the C. secundus and 
Zootermopsis nevadensis protein sequences for evidence-based gene model 
predictions. AUGUSTUS (version 3.2)69, GeneMark-ES Suite (version 4.21)70 and 
SNAP71 were used for ab initio predictions. C. secundus protein-coding genes were 
predicted using homology-based, ab initio and expression-based methods, and 
integrated into a final gene set (see Supplementary Information). Gene structures 
were predicted by GeneWise72. The ab initio annotations were predicted with 
AUGUSTUS73 and SNAP71, retained if supported by both methods and integrated 
with the homology-based predictions using GLEAN74. Transcriptome-based gene 
models were merged with PASA75 and tested for coding potential with CPC76 
and OrfPredictor77. PASA gene models were merged with the homology-based 
and ab initio gene set, retaining the PASA models in case of overlap. Desaturases, 
elongases, chemosensory receptors, cytochrome P450s and genes involved in the 
juvenile hormone pathway were manually curated in Blattodea.
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Differential gene expression. The C. secundus and M. natalensis RNA-Seq 
libraries were complemented with nine published Z. nevadensis libraries, yielding 
two to six libraries from workers, queens and kings for each termite. These were 
compared to six of the B. germanica libraries: two from fifth instar nymphs, two 
from sixth instar nymphs and two from adult females. Reads were mapped to the 
genome using HiSat278. Read counts per gene were obtained using htseq-count 
and DESeq279 was used for differential expression analysis. Differential expression 
analysis between kings (males), queens (females) and workers (majors and  
minors combined for M. natalensis) was assessed for the termites. For  
B. germanica we evaluated the differential expression between adults and the 
two last nymphal stages combined, with the assumption that the final nymphal 
stages are homologous to termite workers and the adult females are homologous 
to termite queens. Genes were considered significantly differentially expressed if 
P <  0.05 and log2(fold change) >  |1| in order to account for allometric differences  
as recommended in a previous study80.

Protein orthology. In addition to B. germanica, C. secundus, Z. nevadensis and 
M. natalensis, 16 other insect proteomes were included in our analyses: Locusta 
migratoria, Rhodnius prolixus, Ephemera danica, Drosophila melanogaster, Aedes 
aegypti, Tribolium castaneum, Nasonia vitripennis, Polistes canadensis, Apis 
mellifera, Harpegnathos saltator, Linepithema humile, Camponotus floridanus, 
Pogonomyrmex barbatus, Solenopsis invicta, Acromyrmex echinatior and Atta 
cephalotes; as well as for the centipede Strigamia maritima as an outgroup  
(for sources, see Supplementary Table 22). These proteomes were grouped  
into orthologous clusters with OrthoMCL81, with a granularity of 1.5.

IR and OR identification, phylogeny and structure. Ionotropic receptors (IRs) 
were identified using two custom hidden Markov models (HMMs) obtained with 
hmmbuild and hmmpress of the HMMER suite82. The first HMM comprises 
the IR’s ion channel and ligand-binding domain based on a MAFFT83 protein 
alignment of 76 IRs from 15 species (Supplementary Table 23). The second HMM 
was built to distinguish IRs from iGluRs, IR8a and IR25a, which have an additional 
amino-terminal domain24. For this we built an HMM from 48 protein sequences 
(Supplementary Table 23). The proteomes were scanned with pfam_scan and the 
two custom HMMs, where proteins that matched the IR HMM, but not the amino-
terminal domain HMM were annotated as IRs. Odorant receptors (ORs) were 
identified on the basis of the Pfam domain PF02949 (7tm OR).

Multiple sequence alignments of IRs and ORs were obtained with hmmalign82, 
using the Pfam OR HMM PF02949 and custom IR HMM to guide the alignment. 
Gene trees were computed with FastTree84 (options: -pseudo -spr 4 -mlacc  
2 -slownni) and visualized with iTOL v385. Putative IR ligand-binding residues  
and structural regions were identified on the basis of the alignments with  
D. melanogaster IRs and iGluRs of known structure86.

Gene family expansions and contractions. For the analyses of gene family 
expansions and contractions, the hierarchical clustering algorithm MC-UPGMA87 
was used, with a ProtoLevel cutoff of 80 (ref. 88). Protein families were further 
divided into sub-families if they contained more than 100 proteins in a single 
species, or more than an average of 35 proteins per species. Proteins were blasted 
against the RepeatMasker TE database (E-value <  10−5) and clusters where >  50% 
of the proteins were identified as transposable elements were discarded. Clade- 
and species-specific protein family expansions and contractions, were identified 
with CAFE v3.089 using the same protocol as in previous studies9,10 (see also 
Supplementary Information).

TE-facilitated expansions. The repeat content in the 10-kb flanking regions of 
B. germanica, C. secundus, Z. nevadensis and M. natalensis genes was calculated 
using bedtools90. Coding DNA sequences (CDSs) from neighbouring genes were 
removed and the repeat content was analysed using generalized linear mixed 
models (glmmPQL implemented in the R91 package MASS92) with binomial error 
distribution. Fixed predictors included gene family expansion, species ID and their 
interaction. Cluster ID was fitted as a random factor to avoid pseudo-replication. 
Significance was assessed on the basis of the Wald t-test (R package aod93) at 
α <  0.05. Main and interaction effects for each of the genomic regions are listed in 
Supplementary Table 8. Model parameters are listed in Supplementary Table 8.

Tests for positive selection. To test for positive selection within gene families of 
interest, site model tests 7 and 8 were performed (model =  0; NSsites =  7 8) on 
species-specific CDS alignments, or branch-site test (model =  2; NSsites =  2; fix_
omega =  1 for null model and 0 for alternative model) on multi-species alignments. 
Protein sequences were aligned using MAFFT83 with the E-INS-i strategy, and CDS 
alignments were created using pal2nal.pl94. Phylogenetic trees were created with 
FastTree84. Alignments were trimmed using Gblocks (settings: -b2 =  21; -b3 =  20; 
-b4 =  5; -b5 =  a). Models were compared using likelihood-ratio test and where 
P <  0.05, Bayes empirical Bayes results were consulted for codon positions under 
positive selection (P <  0.05).

CpG depletion patterns and GO enrichment. To estimate DNA methylation, 
we compared observed to expected CpG counts within CDS sequences38,39. A low 

CpGo/e indicates a high level of DNA methylation, as the cytosines of methylated 
CpGs often mutate to thymines. Expected CpG counts were calculated by dividing 
the product of cytosine and guanine counts by the sequence length. The principal 
component analysis in Fig. 4 was created using the R function prcomp on log-
transformed CpGo/e values for all 1-to-1 orthologues for the seven hemimetabolous 
species. These orthologues were extracted from the OrthoMCL results. The  
three-dimensional (3D) plot was created with the plot3d command from  
the R package rgl.

CpG-depleted (first quartile) and -enriched (fourth quartile) genes were tested 
for enrichment of Gene Ontology terms. Pfam protein domains were obtained for 
B. germanica, Z. nevadensis, C. secundus and M. natalensis protein sequences using 
PfamScan95. Corresponding GO terms were obtained with Pfam2GO. GO-term 
over-representation was assessed using the TopGO96 package in R. Enrichment 
analysis was performed using the weight algorithm selecting nodesize =  10 to 
remove terms with fewer than ten annotated GO terms. After that, GO terms 
classified as significant (topGOFisher <  0.05) were visualized using the R package 
tagcloud (https://cran.r-project.org/web/packages/tagcloud/).

Life Science Reporting Summary. Further information on experimental design  
is available in the Life Sciences Reporting Summary.

Code availability. All custom-made scripts used in these analyses are available at 
the following repository: https://github.com/ebbgroup/Genomic-comparisons-in-
Blattodea.

Data availability. The genome assembly of Blattella germanica is archived on 
NCBI under the accession PRJNA203136. The genome assembly of Cryptotermes 
secundus is available on NCBI under the accession PRJNA381866. The additionally 
annotated genes for Z. nevadensis and M. natalensis are available from the Dryad 
Digital Repository: https://doi.org/10.5061/dryad.51d4r. Transcriptomic reads 
generated in this study are available in SRA (B. germanica: PRJNA382128;  
C. secundus: PRJNA382129; M. natalensis: PRJNA382034).
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    Experimental design
1.   Sample size

Describe how sample size was determined. For our differential expression analyses the sample size is predetermined by the 
number of genes, since we were comparing full transcriptomes between 
conditions.

2.   Data exclusions

Describe any data exclusions. For the kings of the termite Macrotermes natalensis, the sequencing of several 
samples failed, leading to only two replicates. We therefore did not conduct or 
report the results of any statistical tests with these samples.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

For the differential expression analyses we only reported results for which at least 
3 replicates were available. For DESeq2, the package with which we calculated 
differential expression, it is standard practice to work with 3 or more replicates.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

This is not relevant. The experimental groups were determined by the caste 
membership of an individual.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

not relevant

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The software used is described in detail within the methods and the 
supplementary material. These are: 
Genome assembly: Allpaths LG, SOAPdenovo, gapcloser, kgf 
Transcriptome assembly: Trinity, Cufflinks, TopHat 
Repeat annotations: RepeatModeler/RepeatClassifier, LTRharvest/LTRdigest, 
TransposonPSI, CD-hit, Repeat Classifier, RepeatMasker 
Annotation: Maker, AUGUSTUS,  GeneMark-ES Suite, SNAP, GeneWise, PASA, 
GLEAN, CPC, OrfPredictor 
Differential gene expression: HiSat2, DESeq2 
Protein orthology: OrthoMCL 
IR and OR identification: HMMER suite, MAFFT 
Gene family expansions and contractions: MC-UPGMA, CAFE 
Test for positive selection: codeml of the PAML suite 
GO enrichment: pfam2GO, topGO. 
 
Many custom-made scripts available on request. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.
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Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

no unique materials

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

not applicable

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. n/a

b.  Describe the method of cell line authentication used. n/a

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

n/a

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

n/a

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

worker, queen and kings of the two termite species: Cryptotermes secundus and 
Macrotermes natalensis 
Nymphs (5th and 6th instars) and adult females of Blattella germanica

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

n/a
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